Periodate-oxidized 3-aminopyridine adenine dinucleotide phosphate as a fluorescent affinity label for pigeon liver malic enzyme.

نویسندگان

  • G G Chang
  • M S Shiao
  • J G Liaw
  • H J Lee
چکیده

Treatment of 3-aminopyridine adenine dinucleotide phosphate with sodium periodate resulted in oxidation of the ribose linked to 3-aminopyridine ring and cleavage of the dinucleotide into 3-aminopyridine and adenosine moieties. These two moieties were separated by thin layer chromatography and were synergistically bound to pigeon liver malic enzyme (EC 1.1.1.40), causing inactivation of the enzyme. The inactivation showed saturation kinetics. The apparent binding constant for the reversible enzyme-reagent binary complex (KI) and the maximum inactivation rate constant at saturating reagent concentration (kmax) were found to be 1.1 +/- 0.02 mM and 0.068 +/- 0.001 min-1, respectively. L-Malate at low concentration enhanced the inactivation rate by lowering the KI value whereas high malate concentration increased the kmax. Mn2+ or NADP+ partially protected the enzyme from the inactivation and gave additive protection when used together. L-Malate eliminated the protective effect of NADP+ or Mn2+. Maximum and synergistic protection was afforded by NADP+, Mn2+ plus L-malate (or tartronate). Oxidized and cleaved 3-aminopyridine adenine dinucleotide phosphate was also found to be a competitive inhibitor versus NADP+ in the oxidative decarboxylation reaction catalyzed by malic enzyme with a Ki value of 4.1 +/- 0.1 microM. 3-Aminopyridine adenine dinucleotide phosphate or its periodate-oxidized cleaved products bound to the enzyme anticooperatively. Oxidized 3-aminopyridine adenine dinucleotide phosphate labeled the nucleotide binding site of the enzyme with a fluorescent probe which may be readily traced or quantified. The completely inactivated enzyme incorporated 2 mol of reagent/mol of enzyme tetramer. The inactivation was partially reversible by dilution and could be made irreversible by treating the modified enzyme with sodium borohydride. This fluorescent compound and its counterpart-oxidized 3-aminopyridine adenine dinucleotide may be a potential affinity label for all other NAD(P)+-dependent dehydrogenases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of nicotinamide-adenine dinucleotide phosphate analogues and fragments with pigeon liver malic enzyme. Synergistic effect between the nicotinamide and adenine moieties.

The structural requirements of the NADP+ molecule as a coenzyme in the oxidative decarboxylation reaction catalysed by pigeon liver malic enzyme were studied by kinetic and fluorimetric analyses with various NADP+ analogues and fragments. The substrate L-malate had little effect on the nucleotide binding. Etheno-NADP+, 3-acetylpyridine-adenine dinucleotide phosphate, and nicotinamide-hypoxanthi...

متن کامل

Metabolism of l-Malate and d-Malate by a Species of Pseudomonas.

Extracts of a fluorescent species of Pseudomonas grown with m-cresol, degrade gentisic acid without isomerization of the ring-fission compound, maleylpyruvate, to give eventually d-malate and pyruvate. d-Malate is also a growth substrate. l-Malate but not d-malate is oxidized by a particulate enzyme not requiring nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosp...

متن کامل

Prostaglandin metabolism. I. Cytoplasmic reduced nicotinamide adenine dinucleotide phosphate-dependent and microsomal reduced nicotinamide adenine dinucleotide-dependent prostaglandin E 9-ketoreductase activities in monkey and pigeon tissues.

Homogenates of pigeon heart, brain, lung, liver, and the formed elements of blood and of monkey brain, liver, spleen, kidney, lung, uterus, heart, and the formed elements of blood contain an enzyme which catalyzes the reduction of the 9-keto group of prostaglandin E to form prostaglandin F. The prostaglandin E 9-ketoreductase in all of these tissues uses NADPH much more effectively than NADH an...

متن کامل

Coenzyme binding during catalysis is beneficial for the stability of 4-hydroxyacetophenone monooxygenase.

The NADPH-dependent dimeric flavoenzyme 4-hydroxyacetophenone monooxygenase (HAPMO) catalyzes Baeyer-Villiger oxidations of a wide range of ketones, thereby generating esters or lactones. In the current work, we probed HAPMO-coenzyme complexes present during the enzyme catalytic cycle with the aim to gain mechanistic insight. Moreover, we investigated the structural role of the nicotinamide coe...

متن کامل

A novel diazonium-sulfhydryl reaction in the inactivation of yeast alcohol dehydrogenase by diazotized 3-aminopyridine adenine dinucleotide.

Diazotized 3-aminopyridine adenine dinucleotide has been found to modify four sulfhydryl groups per molecule of enzyme during the complete inactivation of yeast alcohol dehydrogenase. The reaction of sulfhydryl groups was indicated by titration studies with 5,5-dithiobis(2-nitrobenzoic acid) as well as isolation and quantitation of the cysteinyl derivative released by acid hydrolysis of the mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 1  شماره 

صفحات  -

تاریخ انتشار 1989